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Abstract

The objective of this paper is to present a novel

approach of utilizing the Hilbert Transform to

enforce the causality requirements on the

electromagnetic fields in the analysis of high
speed digital circuits. The technique is

particularly useful in the absence of extremely

accurate broad band data for the complex

permittivity of lossy dielectric materials,

Finally, in order to validate the accuracy and

usefulness of this new approach, several

numerical examples have been solved and

compared to lossless and traditional non-causal

models.

1. Introduction

The analysis of any electromagnetic fields

problem involves the solution to Maxwell’s

equations in one form or another. In addition to

Maxwell’s equations, the solution must also

satisfy the constitutive relations which describe

the interaction of the EM fields with matter.

The most general way to describe the

constitutive relations in a linear dielectric
medium is given by:

-+-+ 32 +
D=& E+&l:;+& —E+...+&n#2 (1)2 ~12

Where ~ is the electric displacement, ~ is the

electric field, and e, is a complex constmt.

Assuming time harmonic EM fields, the above

equation can be conveniently written in the

frequency domain as:
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D = E E+el(jo)~+ E2(jal)2 ;+... +en(jco)n ; = E(W); (2)

In most practical applications, equation (2) can

be approximated by retaining the first term

only. In this case, equation (2) reduces to:
-+-+
D==&l? (3)

It has been shown [1] that this assumption

however, leads to non-causal TEM solutions to

Maxwell’s equations. Specifically, in a 10SSY
homogeneous dielectric medium, equation (3)

leads to non-causal TEM propagation modes.

Consequently, as was shown in [1,2] an

extremely accurate, broad band frequency

domain characterization of equation (2) is

required in order to obtain a causal model for

the intemction between the electromagnetic
fields and the lossy media in which they exists.

Unfortunately, the required accuracy is

generally not attainable by most memurernent
techniques and systems that appeared in the

literature. In this paper, we have used the

Hilbert T~dnSfOrm to enforce the causality

requirements on the time domain

electromagnetic fields in lieu of such

measurement characterization.

2. The TEM Solution.
In order to illustrate the problem, without loss

of generality, we consider the TEM propagation
on a single lossless conductor line of infinite

length and immersed in a lossy, perfectly

homogeneous dielectric medium. The dielectric

is characterized by a complex constmt

(&(co)=& +E). It is well known that such a

structure supports a TEM propagation. The

transfer function for the line is given by:
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H(ca)=e 1 (4)
or, equivalently, in terms of the transmission
line parameters, the above equation may be

written as:

- [R(m) + jcoL(a))][G(co) + jwc(~)]l

H(o))=e \ (5)

= ~-a(o))le-jp(al)l

where 1 is the transmission line length,

L(0), C(CO),R(W), and G(m) are the usual per unit

length frequency dependent circuit parameters

of the transmission line. U(CO) and ~((o) are

therefore real functions that depend on the

frequency and the line electrical md
geometrical data. When the dielectric medium

is described by a dielectric constant (8= E’+ 8“),

both a(o)) and j3(co) reduce to linear functions

of frequency [1] leading to non-causal

propagation modes. The error in the time

domain pulse response for this non causal

model depends on the pulse rise time and the

slope of u(o)). In order to illustrate, we

consider the example of the quasi-TEM mode
of a single transmission line immersed in a

perfectly homogeneous dielectric medium. For

this line, the line length is 0.5 meters, the

dielectric substrate height H is 5 roils, the line

width W is H.1 roils, and the dielectric constant

& is 4.0 -j&”. Fig. 1 shows the pulse response of

the line for different values of the dielectric

dissipation factor &“. The pulse response shows

a voltage at times ( ts TO) where TO(3.28 nano

seconds) is the delay of the corresponding
Iossless line and therefore is non-causal. It has

been also shown in [2] that in order to preserve

causality, the phase function in (5) must be

nonlinear and very accurately known. Due to

the multi-valuedness of the phase however, this

implies much higher accuracy on the frequency
dependence of the dielectric constant,

particularly at high frequencies. Therefore, in
this paper, we use the magnitude information to

fully characterize the time domain response of

the transmission line. The phase information is

obtained directly from the magnitude

information via the Hilbert Transform.

Specifically, it is well known from the theory of

signal processing that any causal system can be
expressed as the cascade of an all pass system

and a minimum phase system. For the single

lossy line, the all pass system represents the

lossless model of the line, while the minimum
phase represents the attenuation function and

thus depends on the line losses. It is also well

known from the theory of signal processing that

a minimum phase system exhibit the following

property:

Pnl[H(w)] = HT{Lo<~lH(w)l} (6)

where Pm[x] denotes the minimum phase of the

function x, H(o) is the transfer function of the

minimum phase system, and HT denotes the

Hilbert Transform. Thus in order to compute

the causal transfer function of the line, we

compute the non-causal transfer function and

use its magnitude to correct for the phase

information. Specifically, the minimum phase

associated with the magnitude function is

calculated using equation (6). The total phase of

the transfer function is then obtained as the sum

of the linear and non-linear minimum phase

functions. The new, causal transfer function

can thus be written as:

Hc (o.))=lH(0)le ‘JpJH(o)’ (7)

where Pm[x] is as defined in (6). Once the

causal transfer function has been obtained from

(7), the causal impulse and pulse responses of
the line can be obtained using standard FFT
algorithms [3]. Indeed, Fig. 2 shows the causal
pulse response of the line for different values

of 8“. It is clear from this figure that the error

in the non causal model is very large,

particularly for large 8“s.

3. Numerical Examples.
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In this section, we consider the example of a

two conductor microstrip transmission line and

compute the response of the line using a

lossless, a conventional lossy, and the Hilbert

Transform lossy model. Although, strictly

speaking, a microstrip structure does not

support a purely TEM mode, we will apply the
Hilbert Transform technique to each of the two

quasi-TEM propagating modes. The electrical

and geometrical data of the line are shown in

Fig.3. The line is excited with a pulse of 50

picosecond rise time and 100 mV magnitude.

The pulse response of the line at the load end is

shown in Figs. 4 & 5 for the lossless, lossy and

Hilbert Transform lossy models. It is clear from

these figures that the error in the non-causal

model is particularly large at the load end of the

excited line.

4. Summary and Conclusions.

A new technique of applying the Hilbert

Transform to enforce the causality
requirements on the EM fields in High Speed

Transmission Line Networks has been
investigated. This technique is particularly

useful in the absence of highly accurate wide
band data for the frequency dependent complex

permittivity of the dielectric media. The new

technique has been compared to the lossless

and conventional 10SSY models on a two

conductor microstrip transmission line and will

be compared to measurements as well.
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Fig. 3: Two Conductor Microstrip Line.
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